Esempio 11 \(\text{(logaritmi ass. p309n57-58-59)} \)

Studiare dominio e segno della seguente funzione:

\[
y = \ln(2x^2 - 1)
\]

Studio del Dominio

La funzione è un logaritmo naturale ed accetta solo valori strettamente positivi dell’argomento, quindi:

\[
2x^2 - 1 > 0
\]

\[
\Rightarrow x < -\frac{\sqrt{2}}{2} \lor x > \frac{\sqrt{2}}{2}
\]

\[D : (-\infty; -\frac{\sqrt{2}}{2}) \cup (\frac{\sqrt{2}}{2}; +\infty)\]

Studio del Segno

Un logaritmo con base maggiore di 1 è positivo quando l’argomento è anch’esso maggiore di 1. Più precisamente:

\[
\begin{align*}
a > 1 & \quad \log_a f(x) \geq 0 \quad \text{se} \quad f(x) \geq 1 \\
\log_a f(x) < 0 & \quad \text{se} \quad 0 < f(x) < 1
\end{align*}
\]

quindi \(\ln(2x^2 - 1) \geq 0\) se:

\[
2x^2 - 1 \geq 1 \quad \Rightarrow \quad 2x^2 - 2 \geq 0 \quad \Rightarrow \quad -1 \leq x \leq 1
\]

Esempio 12

Studiare dominio e segno della seguente funzione:

\[
y = \log_{\frac{1}{2}} \left(\frac{x}{1-x} \right)
\]

Studio del Dominio

\[
\begin{align*}
\frac{x}{1-x} > 0 & \quad \Rightarrow \quad \frac{1}{1-x} > 0 \\
\frac{1}{1-x} < 0 & \quad \Rightarrow \quad 1-x > 0
\end{align*}
\]

\[D : (0;1)\]

segno di:

\[
\begin{array}{ccc}
x & 0 & 1 \\
\frac{1}{1-x} & - & + & + \\
1-x & + & + & -
\end{array}
\]
Studio del Segno

\[\log_{\frac{1}{2}} \left(\frac{x}{1-x} \right) \geq 0 \quad \Rightarrow \quad 0 < \frac{x}{1-x} \leq 1 \quad \Rightarrow \quad \begin{cases} \frac{x}{1-x} > 0 \\ \frac{x}{1-x} \leq 1 \end{cases} \]

la prima delle due condizioni è già compresa nel dominio, vediamo la seconda:

\[\frac{x}{1-x} - 1 \leq 0 \quad \Rightarrow \quad \frac{x - 1 + x}{1-x} \leq 0 \quad \Rightarrow \quad \frac{2x-1}{1-x} \leq 0 \]

quindi: \[\log_{\frac{1}{2}} \left(\frac{x}{1-x} \right) \geq 0 \quad \Rightarrow \quad 0 < x \leq \frac{1}{2} \]

logaritmi ReF p.311 n.95, 96, 97, p.312 n. 99, p. 315 n. 8